Mini Cart

Solvuu Data Analytics

Exploration Without Limits

Solvuu is a data science company for life scientists that provides a cloud-based data management platform with standardized access to data, tools, and visualization across biological data formats. Solvuu has defined a system rich enough to harmonize all the myriad data formats used in life sciences, specifically bioinformatics, thereby liberating scientists to focus on science. This allows them to abstract away the format of the data, allowing users to focus on the semantic content of the data.

Instead of having to learn and utilize numerous tools, each of which works on just one data format, with Solvuu, you can convert, transform, filter, search, analyze and visualize over all data formats through a single framework. Access Solvuu’s framework in three ways: a web UI for ease and interactive visualizations, a CLI for scripting and bulk operations, or an API for building your own applications.

Advancing Science Through Software 

The goal is to help experimental biologists and bioinformatics scientists manage, organize, validate, and interpret all types of biological data in context, towards experimental validation and testable hypothesis. Solvuu’s flagship data management, organization solution and bioinformatics expertise can help you on small and large data science projects.

Whether you are interested in characterizing mutational landscape of cancer genomes, understanding perturbed pathways in stem cells, studying trait improvement in agricultural crops, dissecting disease susceptibility/resistance in aquaculture, or performing longitudinal studies to understand microbial dysbiosis in human health, Solvuu’s bioinformatics solutions can help you reduce millions of data points to a manageable and biologically meaningful set of target biomarkers by following community accepted best practices for data analysis, supported by rich, interactive visualization.


Microbial Genomics

The development of NGS technologies for assaying microbial genetic material in an environment has become a powerful new approach for rapidly characterizing microbial communities, given a significant percentage of the microbes are uncultivable.


RNA-seq with next-generation sequencing (NGS) has become the method of choice for researchers interested in characterizing genome-wide gene and transcript expression in a single experiment.

Gene Regulation

Eukaryotic gene regulatory mechanisms that induce or repress the expression of a gene include structural and chemical changes to the chromatin and the DNA, binding of proteins to specific DNA elements, or mechanisms that modulate translation of mRNA.

Variant Discovery

With rapidly falling sequencing costs, whole-exome sequencing (WES) and whole-genome sequencing (WGS) using NGS technologies have become de facto standards to characterize individual genomic landscapes to identify causal genomic variants relevant for understanding disease mechanisms, diagnosis and therapy.

Single-cell Genomics

High-throughput “bulk”-omics techniques have advanced our understanding of the molecular states of biological systems. However, they can only capture ensemble averages of cell states and are poorly suited to understand cell types, states, transitions, and locations. Massively parallel single cell genomics assays that can profile hundreds of thousands of individual cells is rapidly emerging as a revolutionary technology.

For more information, please contact us

Tags: Atlantis Bioscience, AWS, Biofinformatics, Bioinformatics, data science, gene regulation, Genomics, microbial genomics, Next-Generation Sequencing, NGS, NGS technologies, single-cell genomics, Solvuu, Transcriptomics, variant discovery

Related Articles